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Abstract

In this paper we prove fixed point results of pair of self maps satisfying contractive

condition involving maximum and minimum function in G-Metric space .
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1 Introduction

The metric fixed point theory is very important and useful in various areas such as varia-
tional inequalities,optimization and approximation theory .Many authors were introduced
generalized structures of metric spaces.Gahler [1, 2] introduced generalized metric space
called 2-metric space also B.C. Dhage [3, 4] obtained new structure known as D-Metric
space.But in 2003,Z.Mustafa and B.#$ims [5] found that there are some limitations in
fundamental topological properties of D-metric space.And ,they [6] introduced a gener-
alized Metric Space namely G-Metric space.For more detail information one can refer
7, 8, 9, 10].Ray (1976) [11] proved common fixed point theorem for the pair of self maps

on complete Metric space X into itself.In 1977 B.Fisher [12] proved some results of common
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fixed points for pair of continuous maps which satisfies a contractive condition in terms
of Maximum function.Then Z.Mustafa et. and all [7] proved some common fixed point

theorems of pair of mapping satisfy contractive condition in terms of maximum function.

2 Preliminaries

Definition 2.1. Let X be a non empty set and G : X3 — Rt which satisfies the following
conditions
1. G(a,b,c) =0ifa=b=ci.e. every a,b,c in X coincides.
2. G(a,a,b) >0 for every a,b,c eX s.t.a#b
3. G(a,a,b) < G(a,b,c), Va,b,ce X st.c#b
4. G(a,b,c) =G(db,a,c) =Glc ba) = ......c..
(symmetrical in all three variables)

5. G(a,b,c) < G(a,z,z) + G(z,b,c) , for all a,b,c,x in X
(rectangle inequality)

Then the function G is said to be generalized metric or simply G-metric on X and

the pair (X,G) is said to be G-metric space.

Example 2.2. Let G: X3 = R* s.t. G(a,b,c) = perimeter of the triangle with vertices
at a,b,c in R?, also by taking p in the interior of the triangle then rectangle inequality is

satisfied and the function G is a G-metric on X.

Remark 2.3. G-meiric space is the generalization of the ordinary metric space that is ev-
ery G-metric space is (X, G) defines ordinary metric space (X, dg ) by dg (a,b)=G(a,b,b)+
G(a,a,b)

Example 2.4. Let (X,d) be the usual metric space . Then the function G : X3 - R*
defined by
G(a,b,c) = mazx.{d(a,b),d(b,c),d(c,a)}
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for all a,b,c € X is a G-metric space.

Definition 2.5. A G-metric space (X,G) is said to be symmetric if G(a,b,b)=G(a,a,b)
for all a,beX and if G(a,b,b)# G(a,a,b) then G is said to be non symmetric G-metric

space.

Example 2.6. Let X={z,y} and G : X3 — R* defined by G(z,7,z)=G(y,y,y)=0,
G(z,z,y)=1,G(z,y,y)=2 and extend G to all of X3 by symmetry in the variables. Then

X is a G-metric space but It is non symmetric. since G(z,z,y) # G(z,y,y)

Definition 2.7. Let (X,G) be a G-metric space, Let {an } be a sequence of elements in

X .The sequence { a, } is said to be G-convergent to a if
limm,n—)ooG(a’ Qn, am) =0

i.e for every € > 0 there is N s.t. G(a,an,am) < € for all mn > N It is denoted as

an = a or limpoon =a

Proposition 2.8. If (X,G) be a G-metric space. Then the following are equivalent

1. {an} is G-convergent to a.

2. G(ap,an,a) > 0asn— oo

3. G(anp,a,a) > 0asn — oo

4. G(am,a;,,a) —0as m,n— o0

Definition 2.9. Let (X,G) be a G-metric space a sequence {an} s called G-Cauchy if ,

for each € > 0 there is an N eIt (set of positive integers) s.t.
G(an,am,a;) <€ for all n,m,l > N

Proposition 2.10. Let (X,G) be a G-metric space then the function G(a,b,c) is jointly

continuous in all three of its variables.

Proposition 2.11. Let (X,G) be a G-metric space. Then, for any a,b,c,z in X it gives that
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.

2.

if G(a,b,c)=0thena=b=c

G(a,b,c) < G(a,a,b) + G(a,a,c)
G(a,b,b) < 2G(b, a, )

G(a,b,c) < G(a,z,c) + G(z,b,c)

G(a,b,c) < 2(G(a,z,7) + G(b, z,x) + G(c, x, 7))

B.Fisher [12] proved following common fixed point theorem for pair of continuous map-

pings.

Theorem 2.12. If Pand Q are two continuous mappings of the complete metric space
X into itself s.t. p(P%z,Q%)) < cmaz.{p(Pz,Qy),p(z,y)} for all z,y € X, where
0<c<1.Then P and @ have a unique fized point z.

Z.Mustafa [14] proved a fixed point theorem in G-metric space which is a generalization

of Banach contraction principle in G-metric space.

Theorem 2.13. If (X,G) be a complete G-Metric space and F be a self mapping of X
which satisfies the following condition for all a,b,c € X G(Fa,Fb,Fc) < aG(a,b,c) for

0<

1.Then F has a unique fized point.

Z.Mustafa et. and all [7] proved following theorem.

Theorem 2.14. Let (X,G) be a complete G-metric space, and F be a self map which

satisfy the condition

or

G(a, F(a), F(a))
G(F(a), F(b), F(c)) < amaz { G(b, F(b), F(b))
G(e,F(c), F(e))

ISSN: 2231-5373 http://www.ijmttjournal.org Page 542



International Journal of Mathematics Trends and Technology (IJMTT) - Volume 56 Issue 7- April 2018

V. V. LATPATE, U. P. DOLHARE |
G(a,a, F(a))
G(F(a), F(b), F(c)) < amaz { G(b,b, F(b))
G(c, ¢, F(c))

for all a,b,cin X ,for a € [0,1).Then F has a unique fized point.

Z.Mustafa and Hameed Obiedat [13] proved following common fixed point theorem.

Theorem 2.15. Let (X,G) be a complete G-metric space, and Let F : X — X be a

map which satisfies

G(F(a), F(b), F(c)) < BG(a,b,c) + a maz. {G(“’F(a)’F(a))’G(b’ F(b)'F(b))}
G(c, F(c), F(c))
for all a,b,c € X ,where 0 < B+ a <1.Then F has a unique fized point (say v), and F

is G-continuous at v .

3 Main Result

Now we prove result of common fixed point theorem for pair of self maps for following

contraction.

Theorem 3.1. If (X,G) be a complete G-Metric space.If the pair of self maps P,Q
satisfy

IA

(s3] G(a, b, b)

G(P(a), Q(b), (b)),
mazx
G(Q(a), P(b), P(b))

.} G(a,Q(b), Q(b)) + G(b, P(a), P(a)))
+ az min
G(a, P(b), P(b)) + G(b,Q(a), Q(a))

(51) R {G(a, P(a), P(a) + G(b,Q(b),Q(b)),}

G(a,Q(a), Q(a)) + G(b, P(b), P(b))
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Jor all a,bin X, where oy,a2,a3 >0 s.t. a1 +2a3 +2a3 < 1. Then P and Q have a

unique common fized point in X.
Proof. Let ap be an arbitrary element of X.We define a sequence {a,} by

P(ap-1), if nis odd

anp =

Q(an-1), if niseven

If n € I* be an odd positive integer then by using (3.1), we have

G(an,an+1,an+1) = G(P(an—1)7Q(aﬂ)7Q(an))

e G(P(an-1),Q(ar), Q(an))
G(Q(an-1), P(an), P(an))

CYIG(an—l» Qanp, an)

. {G(an-l, Q(an), Q(an)) + G(an, P(an-1), P(an_m}
Qs min

IA

IA

G(an_l, P(an), P(an)) + G(aru Q(an—l)’ Q(an—l))

as i G(an—hp(an—l)’P(an—l)) + G(amQ(an)’Q(an))
G(an—laQ(an—l)sQ(an—l)) + G(an, P(an), P(as))

Thus,

IA

a1 G(an-1,an,as)
a2 {G(an-1,Q(ar), Q(ar)) + G(an, P(an-1), Q(an-1))}
az {G(an-1, P(an-1), P(an-1)) + G(an, Q(an), Q(an))}

alG(an—ly Qn, an)

G(an, an+1, Gn41)

+ +

a2 {G(a'n—l» An41, an+1) *+ G(am Qn, an)}

a3 {G(an—l, Qn, an) =t G(ana Qn+1, an+1)}

A+ +

a1 G(an—la Qn, an)

(e %) {G((ln_l, an, ﬂn) = = G(an, an41, an+1)}

+ o+

a3 {G(an-1,an,an) + G(an,an+1,an+1)}
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- ajt+ag+
This gives, G(an, Gn+1,an4+1) < %G(an_l,aman)

If n € N is an even then by using (3.1), we get

G(Q(an-1), P(as), P(an))
3 {G(P(an_l),cz(anw(an))
< mazx
G(Q(an—l)’P(an)’P(an))
a1 G(an-1,an,an)
| {G(an_l, Q(an), Q(an)) + Glan, P(an-1), P(an-1))
g min
G(an—ly P(an)v P(an)) + G(ana Q(an—l)a Q(an—l))
. G(an—lap(an-l),P(an—l)) + G(an, Q(an), Q(an))
+ a3 min
G(a'n—lv Q(an—l),P(an—l)) +G(anaP(an),P(an))
a1 G(an—-1,an,an)
+ a2 {G(an—lvp(an), P(an)) +G(aan(an—1)’ Q(an—l))}
+ a3 {G(an-1,Q(an-1), Q(an-1)) + G(an, P(an), P(an))}

G(anv an+l9an+1)

IN

IA

G(an,@n41,an41) < a1 G(an—1,an,an)
Q2 {G(an—laan+1, an+1) + G(ana Qn, an)}

as {G(an-1,an,an) + G(an,an41,0n41)}

N+ +

a1 G(an-1,an,0n)

az {G(a‘n—]-’ Qn, an) + G(afh an+1, an+1)}

+ o+

as {G(an—l’ Qn, an) + G(am An41, an+1)}

which gives that, G(an,an+1,an+1) < %%G(an_l,an,an) for any positive integer

n, We have

o] +az + a3

(3-2) G(an’ an+1aan+1) < 1—on— a3 G(an—laan» an)

Let 8 = %_&(;2_*‘—;;1, 0<B<1 as og,a2,03 >0 and a3 + 2a3 + 2a3 < 1 with this

(3.2) becomes

(3.3) G(an,an+1,0n41) < BG(an-1,an,an)
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by using relation (3.3) repeatedly, we get
(3.4) G(an;an+1»an+1) < ﬁ"G(ao,al,al)

By using rectangular inequality repeatedly and using (3.4), we get, for all n,m € N s.t.

m>n

(A

G(am am, am) G(ana An+1, an+1) + G(an+17 An+2, an+2)

G(an+2a An+3, (ln+3) + ... + G(am—la Qm, am)

(ﬂn + ﬂn-H ~Friains + ﬂm"l)G(ao, al, al)
B
1=

N+

I

G(ag,a1,a1)

taking limit as n,m — oo , we get lim G(an,am,am) = 0, since limn_,oo—lé_% =0 ..
limit of R.H.S. is 0. .". {an} is a G-Cauchy sequence, since X is G-complete..". there exists
some v € X s.t.{an} converges to v € X. Again by using rectangle inequality and by
equation (3.1), we get

G(v, Q(v),Q(v))

IA

G(v, azn+1,2n41) + Glazn+1, Q(v), Q(v))

= G(v,a2n+1,a2n41) + G(P(azn), Q(v), Q(v))
G(P(azn), Q(v), Q(v)),
G(Q(azn), P(v), P(v)) }

G(v,agn+1,a2n+1) + 01 G(azn,v,v)

. ) G(az, Q(v), Q(v)) + G(v, P(azn), P(azn)),
Qg min
G(azn, P(v), P(v)) + G(v, Q(azn), Q(azs))

| {G(azn, P(azn), P(aza)) + G(v, Qv), Q(v)),}
+ a3 min

IA

G (v, agn+1,a2n+1) + max {

IA

G(azn, Q(az2n), Q(azn)) + G(v, P(v), P(v))

G(v, azn+1,a2n+1) + @1 G(azn, v,v)
a2 {G(QZm Q(’U), Q(v)) =+ G(Uv P(a2n)» P(a2n))}
(6% {G(a2n» P(a2n)v P(a2‘n)) + G(’U, Q(U)v Q('U))}

IA

+ o+
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Thus, we have

G('U, Q('U), Q(’U)) S G('U, a2n+1, a2n+1) +ay G(a2m v, ’U)
a2 {G(azn, Q(v), Q(v)) + G(v,az2n+1,02n+1)}
asg {G(a2m a2n+1, a2n+1) + G(’U, Q('U), Q(’U))}

+

+

taking limit as m — oo, and given that the function G is continuous on its variables
, ... we have G(v,Q(v),Q(v)) < (a1 + a2)G(v,Q(v),Q(v)) But, 0 < (o + a2) < 1,
.. G(v,Q(v),Q(v)) £ G(v,Q(v),Q(v)), which is impossible. .. G(v,Q(v),Q(v)) =0 ..
This gives Q(v) = v.In the same way, we can prove that P(v) = v... u is a common
fixed point of P and Q. To prove uniqueness, if possible suppose th.at there exists some

u € X s.t. P(u)=Q(u)=u. Then

G, u,u) = G(P(v),Qw), Q)

G(P(v), Qu), Q(w)),
maxr

G(Q(v), P(u), P(u))
a1G(v,u,u)

. {G(v, Q) Q(w) + G(u, P(v), P(v)).}
+ ag man

G(v, P(u), P(u)) + G(u, Q(v), Q(v))

. {G(v, P(v), P(v)) + G(u, Q(u), Q(u»,}
az min

IA

IN

G(v,Q(v), Q(v)) + G(u, P(u), P(u))

= a1G(v,u,u)
+ a2{G(v,u,u) + G(u,v,v)}

+ a3{G(v,v,v) + G(u,u,u)}

Which gives,
Qa2
G y Wy e sy Uy
(v,u,u) < 1—a1—a2G(u v,v)
Similarly, we get
a2
G(u,v,v) £ ————G(v, vy,
(u,v,v) < l—al—aZG(v u,u)
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.. from above two inequalities,we have

Q2

G(v,u,u) < ( az)zG(v,u,u)

1—01—

Since 0 < 1_—0‘[’;2_72 <1 .. this gives u = v. O

Theorem 3.2. If (X,G) be a complete G-Metric space.If the pair of self maps P,Q
satisfy

s {G(P(a), Q(b), Q(b))’} a1 G(a,b,b)

G(Q(a), P(b), P(b))

.} G(a,a,Q(b)) + G(b,b, P(a)))
ag min
G(a,a, P(b)) + G(b,b,Q(a))

(3.5) i e {G(a,a,P(a)) + G(b, b, Q(b)),}

G(a,a,Q(a)) + G(b,b, P(b))
for all a,bin X, where aj,az,a3 >0 s.t. a3 +2a2+2a3 <1. Then P and @ have a

unique common fized point in X.

Proof. Let ag be an arbitrary element of X.We define a sequence {a,} by

P(ap-1), if nis odd
Gy, =
Q(an-1), if niseven
Then by similar procedure used in last theorem (3.1), we have for any n € I+

(3.6) G(an, ant1,an41) < B"G(ao,01,01)

then by using rectangie inequality and equation (3.6) , we get, for all n,mm e It ,m>n

G(an,am,am) < G(am,am-1,am-1) + G(am-1,am—2,am—-2)
+ G(am-2,2m-3,0m-3) + ..... + G(an+1,0n,an)
< (B*+ B +..... + 8™ G (ao, a1,a1)
< g G(ag,a1,a1)

S 13 , @1,
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. {an} be a Cauchy sequence.And by completeness of G-metric space, there exists v € X

s.t. {an} is G-convergent to v.As in last proof we prove that,
G('U, v, Q('U)) S (al G aZ)G(vv v, Q('U))

Thus required conclusion follows from same argument used in last theorem. O
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