STUDY OF COMMON FIXED POINT OF WEAKLY COMPATIBLE MAPS IN G-METRIC **SPACE**

Latpate V.V.¹ and Dolhare U.P.² 1ACS College Gangakhed 2 DSM College Jintur

Abstract:-In this article we study weakly compatible maps and E.A. property of pair of self maps. We have proved common fixed point theorem of weakly compatible mappings in G- Metric space.

AMS Subject classification:-47H10, 47H09

Keywords:-G-Metric Space, G-Cauchy Sequence, Coincidence Point, weakly compatible mapping, E.A. Property.

1. Introduction

The fixed point Theory has several applications in various fields such as linear inequalities, Parameterize estimation problems. The Banach Contraction Principle was obtained by S. Banach [1] in 1922.In 1976 G. Jungck [2] proved first common fixed point theorem for commuting maps in usual metric space. The concept of weak commutative maps which is a weaker type of commuting pair of maps was obtained by Sesa [3] and proved some common fixed point results in metric space.

In 1986 Jungck [4] stated the concept of compatible mappings to generalize the concept of weak commutative pair of self maps .Then in 1986 Jungck [5] defined the concept of weakly compatible maps in Metric Space and proved some common fixed point theorems. In 2002, M. Aamri and D.E Moutawakil [6] defined the concept of E.A. Property for pair of self maps. In 1960 Gahler [7] derived a new metric space structure called as 2-Metric Space and claimed that this is more generalized structure of Metric Space. But Some Author Proved that there is no relation between these two metric structures. Ha. etc. all [8] proved that 2-metric need not be continuous of its variables, but usual metric is continuous of its variables.

In 1992 B.C. Dhage [9] introduced new generalized notion of metric space called as D-Metric Space .Mustafa Z. and Sims in 2003 [10] proved some of the results in D-metric Space are invalid. The concept of G-metric space was stated by Mustafa and Sims [11] and proved some results of fixed point in G-metric Space. In 2012 Zead Mustafa [12] proved some theorems of common fixed points for weakly compatible mappings.

2. Preliminaries

Definition 2.1 [11]. Let X be a non empty set and $G: X \times X \times X \to R^+$ which satisfies the following axioms

- (1) G(a,b,c) = 0 if a = b = c i.e. for every a,b,c in X coincides.
- (2) G(a,a,b) > 0 for every $a,b,c \in X$ s.t. $a \neq b$.
- $(3)G(a,a,b) \leq G(a,b,c) \ \forall \ a,b,c \in X$
- $(4)G(a,b,c) = G(b,a,c) = G(c,b,a) = \dots$ (Symmetry in all three variables)
- $(5)G(a,b,c) \le G(a,x,x) + G(x,b,c)$, for all a,b,c,x in X (rectangle inequality)

Then the function G is said to be a generalized Metric Space or G-Metric on X and the pair (X,G) is called G-Metric Space.

Example 2.1 Let $G: X^3 \to R^+$ s.t. G(a,b,c) = perimeter of the triangle with vertices at a,b,c in \mathbb{R}^2 , also by taking p in interior of the triangle then rectangle inequality is satisfied and the function G is **Remark** a function on X.

2.1 G-Metric Space is the generalization of the ordinary metric Space that is every G-metric space (X,G) gives ordinary metric space (X,d_G)

$$d_G(a,b) = G(a,b,b) + G(a,a,b)$$

Example 2.2 Let (X,d) be the usual Metric space. Then the function $G: X^3 \to R^+$ s.t. $G(a,b,c) = \max\{d(a,b), d(b,c), d(a,c)\}$ for all a,b,c in X is a G-Metric space.

Definition 2.2 A G-Metric space (X,G) is said to be symmetric if G(a,b,b) = G(a,a,b) for all $a,b,c \circ X$ and if $G(a,b,b) \neq G(a,a,b)$, then G is said to be non symmetric G-Metric space.

Example 2.3 Let $X = \{x,y\}$ and $G: X^3 \to R^+$ defined by G(x,x,x) = G(y,y,y) = 0, G(x,x,y) = 1, G(x,y,y) = 2 and extend G to all of X^3 by symmetry in the variables. Then X is a G-Metric space but it is non symmetric since $G(x,x,y) \neq G(x,y,y)$.

Definition 2.3 Let (X,G) be a G-Metric space, let $\{a_n\}$ be a sequence of elements in X. The sequence $\{a_n\}$ is said to be G-convergent to a if $\lim_{m,n\to\infty}G(a,a_n,a_m)=0$ i.e. for every $\delta>0$, there is N s.t.

 $G(a,a_n,a_m) < \delta$ for all m,n $\geq N$. It is denoted as $\lim_{n\to\infty} a_n = a$.

Proposition 2.1 ([11]) If (X,G) be a G-Metric space. Then following are equivalent.

- (i) $\{a_n\}$ is G-convergent to a.
- (ii) $G(a_n, a_n, a) \rightarrow \infty$ as $n \rightarrow \infty$
- (iii) $G(a_n, a, a) \rightarrow \infty$ as $n \rightarrow \infty$
- (iv) $G(a_m, a_n, a) \rightarrow \infty$ as m, n $\rightarrow \infty$

Definition 2.4 Let (X,G) be a G-Metric space. A sequence $\{a_n\}$ is called G-Cauchy if, for $\delta > 0$ there is an N δ I⁺ (set of positive Integers) s.t.

$$G(a_n, a_m, a_l) < \delta$$
 for all n,m,l $\geq N$

Proposition 2.2 Let (X,G) be a G-Metric space then the function G(a,b,c) is jointly continious in all three of its variables.

Proposition 2.3 ([11]) Let (X,G) be a G-Metric Space. Then for any a,b,c,x in X, it gives that

- (i) If G(a, b, c) = 0 then a = b = c
- (ii) $G(a,b,c) \le G(a,a,b) + G(a,a,c)$
- $(iii) G(a,b,b) \le 2G(b,a,a)$
- (iv) $G(a,b,c) \le G(a,x,c) + G(x,b,c)$

(v)
$$G(a,b,c) \le \frac{2}{3} (G(a,x,x) + G(b,x,x) + G(c,x,x))$$

Definition 2.5 If S and T be self maps of a set X .If w=Sx=Tx for some x in X, then x is called coincidence point of S and T.

Definition 2.6 [5] Self maps S and T are said to be weakly compatible if they commute at their conicidence point i.e. if Sx=Tx for some x in X then STx=TSx

Example 2.4 Let $X=[1, +\infty)$ and G(a,b,c)=|a-b|+|b-c|+|a-c|.

Define S,T: X \rightarrow X by S(a) = 2a-1 and T(a)=a², a $\stackrel{.}{\circ}$ X, we say that a=1 is the only coincidence point and S(T(1))=S(1)=1 and

T(S(1))=T(1)=1, so S and T are weakly compatible.

Definition 2.7 [6] Let S and T be any two self maps on metric space (X,d). The pair of maps S and T are said to satisfy E.A. property if there exists a sequence $\{a_n\}$ in X s.t.

$$\lim_{n\to\infty} Sa_n = \lim_{n\to\infty} Ta_n = z$$
, for some z in X.

Example 2.5 Let X=[-1,1] and let G be the G-metric on X^3 to R^+ defined as follows

G(a,b,c)=|a-b|+|b-c|+|a-c|. Then (X,G) be a G-Metric Space. Let us define Sx=x and Tx= $\frac{x}{4}$.

Then for a sequence $a_n = \frac{1}{n}$. Then this gives $\lim_{n\to\infty} Sa_n = \lim_{n\to\infty} Ta_n = 0$, for 0 in X.

Here the pair of self maps satisfy E.A. property.

3 Main Result

Now we prove common fixed point theorem for the pair of weakly compatible maps for the new contraction.

Theorem 3.1:-Let (X,G) be a G-Metric Space which is Complete. If S and T be Weakly Compatible maps on X into itself, s.t.

(1)
$$S(X) \subseteq T(X)$$

(2)
$$G(Sa,Sb,Sc) \le \alpha G(Sa,Tb,Tc) + \beta G(Ta,Sb,Tc) + \gamma G(Ta,Tb,Sc) + \delta G(Sa,Tb,Tc)$$
, for all a,b,c in X & α,β,γ and $\delta \ge 0$ s.t. $0 \le \alpha + 3\beta + 3\gamma + \delta < 1$

(3) Subspace S(X) or T(X) is Complete. Then there exists a Unique Common fixed point of S and T in X.

Proof:-Let us choose a_0 be an any element in X. Since $S(X) \subseteq T(X)$, we construct a sequence $\{b_n\}$ in X s.t. for any a_1 in X, $Sa_0 = Ta_1$. In general for a_{n+1} s.t.

$$b_n = Sa_n = Ta_{n+1}$$
 for n=0,1,2..... From inequality (2) in hypothesis, we have

$$\begin{split} G(Sa_{n},Sa_{n+1},Sa_{n+1}) \leq \alpha G(Sa_{n},Ta_{n+1},Ta_{n+1}) + \beta G(Ta_{n},Sa_{n+1},Ta_{n+1}) \\ + \gamma G(Ta_{n},Ta_{n+1},Sa_{n+1}) + \delta G(Sa_{n},Ta_{n+1},Ta_{n+1}) \end{split}$$

:. from the above sequence, we have

$$\begin{split} G(Sa_n,Sa_{n+1},Sa_{n+1}) &\leq \beta G(Sa_{n-1},Sa_{n+1},Sa_n) + \gamma G(Sa_{n-1},Sa_n,Sa_{n+1}) \\ & (\because \alpha G(Sa_n,Sa_n,Sa_n) = 0 = \delta G(Sa_n,Sa_n,Sa_n)) \end{split}$$

: By symmetry, we have

$$G(Sa_{n-1}, Sa_{n+1}, Sa_n) = G(Sa_{n-1}, Sa_n, Sa_{n+1})$$

$$G(Sa_n, Sa_{n+1}, Sa_{n+1}) \le (\beta + \gamma)G(Sa_{n-1}, Sa_n, Sa_{n+1})$$
 (1.1)

By using rectangular inequality of G- metric space. We have

$$\begin{split} G(Sa_{n-1},Sa_n,Sa_{n+1}) &\leq G(Sa_{n-1},Sa_n,Sa_n) + G(Sa_n,Sa_{n+1},Sa_n) \\ &\leq G(Sa_{n-1},Sa_n,Sa_n) + 2G(Sa_n,Sa_{n+1},Sa_{n+1}) \end{split}$$

(: By using Proposition 2.1) from given hypothesis (ii), we have

$$(1-2\beta-2\gamma)G(Sa_n,Sa_{n+1},Sa_{n+1})\leq (\beta+\gamma)G(Sa_{n-1},Sa_n,Sa_n)$$

$$G(Sa_n, Sa_{n+1}, Sa_{n+1}) \le \frac{\beta + \gamma}{1 - 2\beta - 2\gamma} G(Sa_{n-1}, Sa_n, Sa_n)$$

$$G(Sa_n, Sa_{n+1}, Sa_{n+1}) \le q_1 G(Sa_{n-1}, Sa_n, Sa_n)$$

Where
$$q_1 = \frac{\beta + \gamma}{1 - 2\beta - 2\gamma} < 1$$

By continuing in this way, We get

$$G(Sa_n, Sa_{n+1}, Sa_{n+1}) \le q_1^n G(Sa_0, Sa_1, Sa_1)$$
 (1.2)

For all n,m $\circ I^+$, Let m > n and by using rectangle inequality

Consider

$$\begin{split} G(b_{n},b_{m},b_{m}) &\leq G(b_{n},b_{n+1},b_{n+1}) + G(b_{n+1},b_{n+2},b_{n+2}) \\ &+ \dots + G(b_{m-1},b_{m},b_{m}) \end{split}$$

$$G(b_n, b_m, b_m) \le (q_1^n + q_1^{n+1} + \dots + q_1^{m-1})G(b_0, b_1, b_1)$$

(: by using (2))

$$\leq \frac{q_1^n}{1-q_1}G(b_0,b_1,b_1)$$

As $n, m \to \infty$: R.H.S. of above inequality tends to 0. We have $\lim_{n\to\infty} G(b_n,b_m,b_m)=0$: The sequence $\{b_n\}$ is a G-Cauchy sequence in X. Since S(X) or T(X) is Complete subspace of X then subsequence of $\{b_n\}$ must get a limit in T(X).

 \therefore The Sequence $\{b_n\}$ also convergent .Since $\{b_n\}$ Contains a Convergent subsequence in T(X). Say it c_1 . Let $u = Tc^{-1}$ then Tu=c₁ Now we prove that Su=c₁

On putting $a = u, b = a_n$ and $c=a_n$ in (ii), We have

$$G(Su, Sa_n, Sa_n) \le \alpha G(Su, Ta_n, Ta_n) + \beta G(Tu, Sa_n, Ta_n) + \gamma G(Tu, Ta_n, Sa_n) + \delta G(Su, Ta_n, Ta_n)$$

as $n \to \infty$, above inequality becomes

$$\beta G(Tu, Sa_n, Ta_n) = \beta G(c_1, c_1, c_1) = 0$$
 also
 $\gamma G(Tu, Ta_n, Sa_n) = G(c_1, c_1, c_1) = 0$

∴ We have

$$G(Su,c_1,c_1) \leq \alpha G(Su,c_1,c_1)$$

This gives, $Su = c_1$

 $\therefore Su = Tu = c_1 \therefore$ u is a coincident point of S and T.

As S and T are weakly Compatible :. By definition STu = TSu :: $Sc_1 = Tc_1$

Now we show that $Sc_1 = c_1$. Suppose $Sc_1 \neq c_1$,

:.
$$G(Sc_1, c_1, c_1) > 0$$
 In (ii) putting $a=c_1, b=u, c=u$

: We have

$$\begin{split} G(Sc_1,c_1,c_1) &= G(Sc_1,Su,Su) \\ &\leq \alpha G(Sc_1,Tu,Tu) + \beta G(Tc_1,Su,Tu) \\ &+ \gamma G(Tc_1,Tu,Su) + \delta G(Sc_1,Tu,Tu) \\ &= (\alpha + \beta + \gamma + \delta)G(Sc_1,c_1,c_1) \\ &< G(Sc_1,c_1,c_1) \end{split}$$

Which is a contradiction. \therefore this gives $Sc_1 = c_1$

 $\therefore Sc_1 = Tc_1 = c_1 \therefore c_1$ is a Common fixed point of S and T.

To prove Uniqueness,

Suppose that c' is another Common fixed Point of S and T which is distinct from c_1 , i.e. $c_1 \neq c'$.

Consider,

$$\begin{split} G(c_{1},c',c') &= G(Sc_{1},Sc',Sc') \\ &\leq \alpha G(Sc_{1},Tc',Tc') + \beta G(Tc_{1},Sc',Tc') \\ &+ \gamma G(Tc_{1},Tc',Sc') + \delta G(Sc_{1},Tc',Tc') \\ &= (\alpha + \beta + \gamma + \delta)G(c_{1},c',c') \\ &\leq G(c_{1},c',c') \\ &\therefore c_{1} = c' \end{split}$$

Hence proof.

Theorem 3.2: If S and T be two maps on a G-metric Space (X, G) into itself which Satisfy

(i)
$$G(Sa,Sb,Sc) \le \alpha G(Sa,Tb,Tc) + \beta G(Ta,Sb,Tc) + \gamma G(Ta,Tb,Sc) + \delta G(Sa,Tb,Tc)$$
, for all a,b,c in X & α,β,γ and $\delta \ge 0$ s.t. $0 \le \alpha + 3\beta + 3\gamma + \delta < 1$

- (ii) T(X) is closed subspace of X.
- (iii) S and T satisfies E.A. property. Moreover, If S and T are weakly Compatible self Maps. Then S and T have Unique Common fixed Point in X.

Proof:- Given that S and T satisfies E.A. Property: By definition, there exists a sequence $\{a_n\}$ ò X s.t. $\lim_{n\to\infty} Sa_n = \lim_{n\to\infty} Ta_n = z \dot{o} X$ Also by (ii) \$T(X)\$ is closed, : every Convergent Sequence of Points of T(X) contains limit points.

$$z \circ T(X)$$
 : for some $y \circ X$, $z=Ty$

:. from (i) we have

$$G(Sy, Sa_n, Sa_n) \le \alpha G(Sy, Ta_n, Ta_n) + \beta G(Ty, Sa_n, Ta_n)$$
$$+ \gamma G(Ty, Ta_n, Sa_n) + \delta G(Sy, Ta_n, Ta_n)$$
$$As \ n \to \infty \text{ and by } 0 \le \alpha + 3\beta + 3\gamma + \delta < 1,$$

Consider,

$$G(Sy, z, z) \le \alpha G(Sy, z, z) + \beta G(z, z, z)$$

$$+ \gamma G(z, z, z) + \delta G(Sy, z, z)$$

$$= (\alpha + \delta)G(Sy, z, z)$$
but $(\alpha + \delta) < 1$

$$\therefore G(Sy, z, z) = 0$$

$$\therefore Sy = z$$

$$\therefore Sy = Ty = z \ \delta \ X$$

 \therefore y is the Coincident point of S and T.

Also Given that S and T are weakly Compatible.

$$\therefore Sz=STy=TSy=Tz$$
$$\therefore Sz=Tz$$

Using (i), We have

$$G(Sz, Sy, Sy) \leq \alpha G(Sz, Ty, Ty) + \beta G(Tz, Sy, Ty)$$

$$+ \gamma G(Tz, Ty, Sy) + \delta G(Sz, Ty, Ty)$$

$$\therefore G(Sz, z, z) \leq \alpha G(Sz, z, z) + \beta G(Sz, z, z)$$

$$+ \gamma G(Sz, z, z) + \delta G(Sz, z, z)$$

$$\leq (\alpha + \beta + \gamma + \delta) G(Sz, z, z)$$

$$\therefore G(Sz, z, z) = 0$$

$$\therefore Sz = z$$

$$\therefore Sz = Tz = z$$

 \therefore \$z\$ is a Common Fixed point of S and T.

Conclusion: - Thus we have proved Common fixed theorem for pair of weakly compatible mappings and second result for weakly compatible maps which satisfy E.A. property. References:-

- [1] Steafan Banach., Surles operations dansles ensembles abstraits et leur applications aux equations integrals, Fund. Math., 3(1922) 133-181.
- [2] G Junk., Commuting maps and fixed points, Am. Mat., 83 (1976) 261-263.
- [3] Sesa, 'On a Weak commutativity condition of mappings in fixed point consideration', Publication. Int, Mathematical. Society, 32(1982) 149-153
- [4] Jungck. G. 'Compatible maps and common fixed points, 9(4), (1986) 771-779
- [5] G.Jungck, 'Common fixed points for noncontinuous non self maps on non Metric Spaces' Far, East Journal. Mathematical. Science., 4(1996) 199-215
- [6] Aamri M., D.E. Moutawakil, 'Some new common fixed point theorems under strict contractive conditions', Journal. Mathematical. Analysis. And Appllications. 270(2002). 181-188
- [7] S. Gahler, 2-Metric spaces Raume und three topologische strukter, Mathematische Nachrichten, 26(1963), 115-148.
- [8] HA.et. all, strictly convex and 2-convex 2-Normed spaces, Math. Japonica, 33(3) (1988), 375-384
- [9] B.C. Dhage, Generalized Metric space and mapping with fixed point, Bulletin of Calcutta Mathematical society., 84 (1992)
- [10] Z. Mustafa and Sims, Some Remarks Concerning D-Metric spaces, Proceeding of International conference on fixed point theory and applications, Yokohama publishers, Valenica, 13(19) 2004
- [11] Z. Mustafa and B. Sims A new approach to generalized Metric spaces, J. Non. And Convex analysis, 7, (2) (2006) 289-297
- [12] Mustafa Z., Common Fixed points of weakly compatible mappings in G-Metric spaces, appl. Mat.vol 6,2012 no. 92, 4589-4600.