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1. Introduction

The fixed point Theory has several applications in various fields such as linear inequalities, Parameterize
estimation problems. The Banach Contraction Principle was obtained by S. Banach [1] in 1922.In 1976 G.
Jungck [2] proved first common fixed point theorem for commuting maps in usual metric space . The
concept of weak commutative maps which is a weaker type of commuting pair of maps was obtained by
Sesa [3] and proved some common fixed point results in metric space.

In 1986 Jungck [ 4 ] stated the concept of compatible mappings to generalize the concept of weak
commutative pair of self maps .Then in 1986 Jungck [ 5 ] defined the concept of weakly compatible maps in
Metric Space and proved some common fixed point theorems. In 2002, M. Aamri and D.E Moutawakil [6]
defined the concept of E.A. Property for pair of self maps. In 1960 Gahler [7] derived a new metric space
structure called as 2-Metric Space and claimed that this is more generalized structure of Metric Space. But
Some Author Proved that there is no relation between these two metric structures. Ha. etc. all [8] proved
that 2-metric need not be continuous of its variables, but usual metric is continuous of its variables.

In 1992 B.C. Dhage [ 9 ] introduced new generalized notion of metric space called as D-Metric Space
Mustafa Z. and Sims in 2003 [ 10 ] proved some of the results in D-metric Space are invalid.The concept of
G-metric space was stated by Mustafa and Sims [ 11 ] and proved some results of fixed point in G-metric
Space. In 2012 Zead Mustafa [12] proved some theorems of common fixed points for weakly compatible
mappings.

2. Preliminaries

Definition 2.1 [11]. Let X be a non empty set and G : X x X x X — R* which satisfies the following axioms

(D) G(a,b,c)=0ifa=b=c i.e. for every a,b,c in X coincides.

(2) G(a,a,b) >0 for every a,b,c € X s.t.a#b.

(3)G(a,a,b) < G(a,b,c) ¥V a,b,c € X

(4G(a,b,c) =G(b,a,c) =G(c,b,a) =....... ( Symmetry in all three variables)
(5)G(a,b,c) £G(a,x,x)+G(x,b,c), forall a,b,c,x in X (rectangle inequality)
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Then the function G is said to be a generalized Metric Space or G-Metric on X and the pair (X,G) is called
G-Metric Space.

Example 2.1 Let G: X* — R* s.t. G(a,b,c) = perimeter of the triangle with vertices at a,b,c in R?,

also by taking p in interior of the triangle then rectangle inequality is satisfied and the function G is Remark
a function on X.
2.1 G-Metric Space is the generalization of the ordinary metric Space that is every G-metric space (X,G)

gives ordinary metric space (X,d;)

d;(a,b)=G(a,b,b)+G(a,a,b)

Example 2.2 Let (X,d) be the usual Metric space . Then the function G: X* — R* s.t.
G(a,b,c) = max{d(a,b),d(b,c),d(a,c)} forall a,b,c in X is a G-Metric space.

Definition 2.2 A G-Metric space (X, G) is said to be symmetric if G(a,b,b) = G(a,a,b) for all a,b,c 6 X
and if G(a,b,b) # G(a,a,b), then G is said to be non symmetric G-Metric space.

Example 2.3 Let X={x,y} and G: X’ — R*defined by G(x,x,x) = G(»,,y) =0,G(x,x,y) =1,
G(x,y,y) =2 and extend G to all of X* by symmetry in the variables. Then X is a G-Metric space

but it is non symmetric since G(x,x,y) # G(X,y,y). '

Definition 2.3 Let (X,G) be a G-Metric space , let {a,} be a sequence of elements in X. The sequence
{a,} is said to be G-convergent to a if lim,, , ,,G(a,a,,a,) =0 i.e. for every 6 >0, there is N s.t.
G(a,a,,a,) <0 forallmn > N.Itis denoted as lim,_,_a, =a.

Proposition 2.1 ([11 ]) If (X,G) be a G-Metric space. Then following are equivalent.

(i) {a,} is G-convergent to a.

(ii) G(a,,a,,a) - ©asn —>©

(iif) G(a,,a,a) - ®asn —®

(iv) G(a,,,a,,a) > ©asm,n —©

Definition 2.4 Let (X,G) be a G-Metric space. A sequence {a,} is called G-Cauchy if ,

for 6> 0 there isan N 0 I* (set of positive Integers) st.
G(@,,a,,qa) <0 forallnm, >N

Proposition 2.2 Let (X,G) be a G-Metric space then the function G(a,b,c) is jointly
continious in all three of its variables.

Proposition 2.3 ([ 11 ]) Let (X,G) be a G-Metric Space. Then for any a,b,c,x in X, it gives that
(i) If G(a,b,c)=0thena=b=c

(if) G(a,b,c) £ G(a,a,b)+G(a,a,c)

(#ii) G(a,b,b) £ 2G(b,a,a)

(iv) G(a,b,c) £ G(a,x,c)+G(x,b,c)

(v) G(a,b,c) < % (G(a,x,x)+G(b,x,x) + G(c, x,x))

Definition 2.5 If S and T be self maps of a set X .If w=Sx=Tx for some x in X, then
x is called coincidence point of S and T.
Definition 2.6 [ 5 ] Self maps S and T are said to be weakly compatible if they commute

at their conicidence point i.e. if Sx=Tx for some x in X then STx = 7Sx
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Example 2.4 Let X=[1, +0) and G(a,b,c)=|a-b|+|b-c|+|a-c|.
Define S,T: X — X by S(a) =2a—1and T(a)=a’ ,a 0 X , we say that a=1 is the only
coincidence point and S(T(1))=S(1)=1 and
T(S(1))=T(1)=1, so S and T are weakly compatible.
Definition 2.7 [ 6 ] Let S and T be any two self maps on metric space (X,d). The pair of maps
S and T are said to satisfy E.A. property if there exists a sequence {a,} in Xs.t.

lim, , Sa =lim ,_Ta =z, for some z in X.

Example 2.5 Let X=[-1,1] and let G be the G-metric on X* to R* defined as follows

G(a,b,c)=la-b|+|b-c|+a-c|. Then (X,G) be a G-Metric Space.Let us define Sx=x and Tx= %

Then for a sequence a, = l Then this gives lim,_, Sa,=lim,_,_ Ta, =0 ,for 0 in X.
n

Here the pair of self maps satisfy E.A. property.

3 Main Result

Now we prove common fixed point theorem for the pair of weakly compatible maps for the new
contraction.

Theorem 3.1:-Let (X,G)be a G-Metric Space which is Complete. If S and T be Weakly Compatible
maps on X into itself, s.t.

M) S(X) = T(X)

(2) G(Sa,Sb,Sc) < aG(Sa,Th,Tc) + FG(Ta, Sb,Tc) + yG(Ta,Tb,Sc) +
0G(Sa,Tbh,Tc), for all a,b,c in X & a,fB,y and § >0
st. 0<a+3f+3y+0<1

(3)Subspace S(X) or T(X) is Complete. Then there exists a Unique Common fixed point of §
and7 inX .

Proof:-Let us choose a, be an any element in X . Since §S(X) < T(X), we construct a sequence {b,} in

X st.forany g, inX, Sa, =Ta,.In general for a,, s.t.

b,=8a,=Ta,, forn=0,1,2......

n+l From inequality (2) in hypothesis, we have

G(San,San_H,Sa +l) < aG(San,Tan+l,Tan+l) + ﬂG(Tan,San+l, l)

+yG(Tay,,Ta 1)+5G(San,Ta

n+l S n+l’ an+l)

.~ from the above sequence ,we have

) < BG(Sa

G(Say,Sa n— 1’ D410

15041 Sap) +yG(Sa

e ]# Sa,,,Sa

n+l )

(- aG(Say,,Sa,, Say,) = 0 = 5G(Say,, Sa,, Say))
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*» By symmetry, we have

G(Sa San+1,San) = G(San_l,San ,Sa

n-1° n+l)

G(Say,Sa San+1)s(,B+y)G(San_1,San,San+1) (1.1)

n+l’
By using rectangular inequality of G- metric space .We have
G(Sa San,San+l) < G(San_l,San,San) + G(San,San+1,San)

< G(San__l,San,San) + 2G(San,San+l,San+l)

n-1°

(*. By using Proposition 2.1) from given hypothesis (ii), we have

(1-28- 27)G(San,San+l,San+1) <+ }/)G(San_l,San,San)

+
G(Sap,Sa, ,1,Sa, )< BT Gisa

,9a,,5a
=2 -2y lnt> 5 5n)

G(Sa,,Sa

n+12

Sa,.,)<qG(5Sa, ,Sa,,Sa,)

+
Where ¢ = L <1

T 1-28-2y
By continuing in this way , We get
G(Say,Sa,,,Sa, ) <q,"G(Say,Sa;,Sa))  (12)
Forallnm 6/ , Let m> n and by using rectangle inequality

Consider

G(b,.b.,b Y<G(b,.b...,b...) +G(D,..,b,.2,b,.,)

n+1°2~n+l n+1°~n+2°n
S +G(b, ,,b,,b)
G(b,b b )<(q +q™ + e +q")G(by,b,,b,)

(.. by using (2))

< 1611 G(by,b,,b)

Y

As n,m — o .. R.H.S. of above inequality tends to 0. We have
lim, .G(b,,b,,b,)=0 .. The sequence {b, } is a G-Cauchy sequence in X . Since S(X) or T'(X) is
Complete subspace of X then subsequence of { b, } must get a limit in7'(X).

.. The Sequence { b, } also convergent .Since {5, } Contains a Convergent subsequence in7'(X) . Say itc, .

Let u=Tc™ then Tu=c, Now we prove that Su=c,

On putting a =u,b=a, and c=a,, in (i), We have
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G(Su,San,San) < aG(Su,Tan,Tan) + ,BG(Tu,San,Tan) + }/G(Tu,Tan,San)
' + 5G(Su,Ta,,, Ta,)

as n — o , above inequality becomes

BG(Tu,Say,,Tay,) = BG(c ,cl,cl) =0 also
yG(Tu,Tay,,Sa,) = G(cl,cl,cl) =0

. We have

G(Su,c1 : cl) <aG(Su, )

This gives , Su = cl

SSu=Tu= ¢| - uisacoincident point of S and T.

As § and T are weakly Compatible .. By definition ST =TSy .. Sc, =T¢,

Now we show that Sc, = ¢, . Suppose Sc, # € s

G(Scl,cl,cl) >0 In (ii) putting a=c1,b =u,c=u
.. We have
G(Scl,cl,cl) = G(Scl,Su,Su)
< aG(Scl,Tu,Tu) + ,BG(Tcl »Su,Tu)
+yG(Tcl, Tu,Su) + JG(Scl, Tu,Tu)
=a+pf+y+ §)G(Sc1,c1,c1)
<G(Scl,cl,cl)

Which is a contradiction. .. this gives Sc, = &S

~8¢ =Tc,=¢, .. c isaCommon fixed pointof S and 7.
To prove Uniqueness,
Suppose that ¢ is another Common fixed Point of S and T which is distinct from ¢, . i.e. ¢ #c'.
Consider,
G(cl,c',c') = G(Scl,Sc s8¢”)
<aG(Sep,Te'\Te') + BG(Tcy,Sc'\Tc")
+yG(Tcl,Tc’,Sc') + é’G(Scl,Tc YTc")
=a+p+y +§)G(cl,c’,c')
<G(cl,c',c')
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Hence proof.

Theorem 3.2 :-If S and 7' be two maps on a G-metric Space (X,G) into itself which Satisfy

() G(Sa,Sb,Sc) < aG(Sa,Th,Tc)+ pG(Ta,Sb,Tc) + yG(Ta,Th,Sc) +
0G(Sa,Tb,Tc), for allab,cin X & a,f,y and 6 =0
st. 0<a+3f+3y+o<1

(ii) T(X) is closed subspace of X.

(iii) S and T satisfies E.A. property. Moreover, IfS andT are weakly Compatible self Maps. Then S and
T have Unique Common fixed Point in X .

Proof:- Given that S’ and T' satisfies E.A. Property .. By definition , there exists a sequence {a,} 0 X s.t.

lim,_ Sa, =lim,  Ta, =z0X Also by (ii) $T(X)$ is closed, ... every Convergent Sequence of Points of
$T(X)$ contains limit points.

zO0T(X) .. forsomeyo X, z=Ty

... from (i) we have

G(Sy,Sa,,Sa,)<aG(Sy,Ta,,Ta,)+ pG(Ty,Sa,,Ta,)
+yG(Ty,Ta,,Sa,)+6G(Sy,Ta,,Ta,)

Asn—>oandby0<a+3f+3y+d<],

Consider,

G(Sy,z,z) £ aG(Sy,z,z) + pG(z,z,z)
+yG(z,2z,2) + 0G(Sy, z,2)
=(a+9)G(Sy,z,z)
but (@ +0) <1
=~ G(Sy,z,2z)=0
SSy=z
~Sy=Ty=z0X

". y is the Coincident point of S and T.

Also Given that 5 and 7' are weakly Compatible.

. Sz=STy=TSy=Tz
S Sz=Tz

Using (i) , We have
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. G(8z,8y,8y) < aG(Sz, Ty, Ty) + BG(Iz, Sy, Ty)
’ +yG(1z,Ty,Sy) + 6G(Sz, Ty, Ty)
. G(82,2,2) < aG(Sz,z,2) + BG(Sz, z, z)
+yG(8z,2,2)+ 6G(Sz, z, z)
<(a+B+y+6)G(Sz,z,2)
(82, 2,2)=0

SSz=z

L=
. $z8 is a Common Fixed point of S and 7.

Conclusion: - Thus we have proved Common fixed theorem for pair of weakly compatible mappings and
second result for weakly compatible maps which satisfy E.A. property. References:- '
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