ISSN NO: 0022-1945

Common fixed point result in Complete G-metric space.

V. V. LATPATE

A.C.S.College, Gangakhed, Dist. Parbhani, Maharashtra, India 431514 e-mail: vishnu.latpate@yahoo.com

Abstract

In this paper we study compatible maps in G-Metric space and obtain a common fixed point Result for pair of Compatible maps in G-Metric space which is the generaliation of common fixed point result of pair of self maps in Complete metric space.

Keywords: G-Metric Space, G-Cauchy sequence, G-convergent Sequence, Compatible maps.

2000 Mathematics Subject Classification: 47H10, 54H25

1 Introduction

In 1976, G.Jungck [1] proved a common fixed point theorem for commuting mappings, which generalizes the Banach Contraction principle. Sesa [2] introduced a concept of weakly commuting mappings and proved some fixed point theorems in complete metric space. Commuting maps are weakly commuting. Jungck's [1] common fixed point theorem has been generalized and modified by many authors [3, 4, 5, 6, 7]. In 1986 G. Jungck [5] defined the concept of compatibility and proved some common fixed point results.

In 2006 Mustafa and Sims [9] introduced the concept of G-Metric space. In 2012 Manoj Kumar [8] defined the concept of compatible maps in G-Metric space and proved some results of common fixed points of pair of compatible maps.

2 Study of Compatible mappings and common fixed point result in G-metric space.

2 Preliminaries

Definition 2.1. Let X be a non empty set and $G: X^3 \to R^+$ which satisfies the following conditions

- 1. G(a,b,c) = 0 if a = b = c i.e. every a,b,c in X coincides.
- 2. G(a, a, b) > 0 for every $a, b, c \in X$ s.t. $a \neq b$
- 3. $G(a, a, b) \leq G(a, b, c), \forall a, b, c \in X \text{ s.t. } c \neq b$
- 4. $G(a,b,c) = G(b,a,c) = G(c,b,a) = \dots$ (symmetrical in all three variables)
- 5. $G(a,b,c) \leq G(a,x,x) + G(x,b,c)$, for all a,b,c,x in X (rectangle inequality)

Then the function G is said to be generalized metric or simply G-metric on X and the pair (X,G) is said to be G-metric space.

Example 2.2. Let $G: X^3 \to R^+$ s.t. G(a,b,c) = perimeter of the triangle with vertices at a,b,c in R^2 , also by taking p in the interior of the triangle then rectangle inequality is satisfied and the function G is a G-metric on X.

Remark 2.3. G-metric space is the generalization of the ordinary metric space that is every G-metric space is (X,G) defines ordinary metric space (X,d_G) by

$$d_G(a,b) = G(a,b,b) + G(a,a,b)$$

Example 2.4. Let (X,d) be the usual metric space. Then the function $G:X^3\to R^+$ defined by

$$G(a, b, c) = max.\{d(a, b), d(b, c), d(c, a)\}\$$

for all $a,b,c \in X$ is a G-metric space.

3

Definition 2.5. A G-metric space (X,G) is said to be symmetric if G(a,b,b)=G(a,a,b) for all $a,b \in X$ and if $G(a,b,b) \neq G(a,a,b)$ then G is said to be non symmetric G-metric space.

Example 2.6. Let $X = \{x, y\}$ and $G : X^3 \to R^+$ defined by G(x, x, x) = G(y, y, y) = 0, G(x, x, y) = 1, G(x, y, y) = 2 and extend G to all of X^3 by symmetry in the variables. Then X is a G-metric space but It is non symmetric. since $G(x, x, y) \neq G(x, y, y)$

Definition 2.7. Let (X,G) be a G-metric space, Let $\{a_n\}$ be a sequence of elements in X. The sequence $\{a_n\}$ is said to be G-convergent to a if

$$lim_{m,n\to\infty}G(a,a_n,a_m)=0$$

i.e for every $\epsilon > 0$ there is N s.t. $G(a, a_n, a_m) < \epsilon$ for all $m, n \ge N$ It is denoted as $a_n \to a$ or $\lim_{n \to \infty} a_n = a$

Proposition 2.8. If (X,G) be a G-metric space. Then the following are equivalent

- 1. $\{a_n\}$ is G-convergent to a.
- 2. $G(a_n, a_n, a) \to 0 \text{ as } n \to \infty$
- 3. $G(a_n, a, a) \to 0 \text{ as } n \to \infty$
- 4. $G(a_m, a_n, a) \to 0$ as $m, n \to \infty$

Definition 2.9. Let (X,G) be a G-metric space a sequence $\{a_n\}$ is called G-Cauchy if, for each $\epsilon > 0$ there is an N ϵI^+ (set of positive integers) s.t.

$$G(a_n, a_m, a_l) < \epsilon \text{ for all } n, m, l \ge N$$

Proposition 2.10. Let (X,G) be a G-metric space then the function G(a,b,c) is jointly continuous in all three of its variables.

Proposition 2.11. Let (X,G) be a G-metric space. Then, for any a,b,c,x in X it gives that

1. if
$$G(a, b, c) = 0$$
 then $a = b = c$

- 4 Study of Compatible mappings and common fixed point result in G-metric space.
 - 2. $G(a, b, c) \le G(a, a, b) + G(a, a, c)$
 - 3. $G(a, b, b) \le 2G(b, a, a)$
 - 4. $G(a, b, c) \leq G(a, x, c) + G(x, b, c)$
 - 5. $G(a,b,c) \leq \frac{2}{3}(G(a,x,x) + G(b,x,x) + G(c,x,x))$

Definition 2.12. [5] Let S and T be two self maps on a metric space (X,d). The mappings S and T are said to be compatible if

$$\lim_{n \to \infty} d(STx_n, TSx_n) = 0$$

, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = z$ for some $z\epsilon X$

Definition 2.13. [8] Let S and T be two self mappings on a G-metric space (X,G). Then mappings S and T are said to be compatible if $\lim_{n\to\infty} G(STx_n, STx_n, TSx_n) = 0$, whenever $\{x_n\}$ is a sequence in X s.t. $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = z$ for some $z \in X$ for some z in X.

Example 2.14. Let X=[-1,1] and $G:X^3\to R^+$ be defined as follows

$$G(a,b,c) = |a-b| + |b-c| + |c-a|$$

for all a,b,c ϵX . Then (X,G) be a G-metric space. Let us define fa=a and $ga=\frac{a}{4}$ Let $\{a_n\}$ be the sequence, s.t. $a_n=\frac{1}{n}$ and n is a natural number. It is easy to see that the mappings f and g are compatible as $\lim_{n\to\infty}G(fga_n,gfa_n,gfa_n)=0$ here $a_n=\frac{1}{n}$ s.t. $\lim_{n\to\infty}fa_n=\lim_{n\to\infty}ga_n=0$ for $0\epsilon X$

In 1980,J .Madhusudhanrao [10] proved common fixed point theorem for pair of self maps in Complete metric space.

Theorem 2.15. Let (X,d) be a Complete metric space. If P, Q be a pair of maps on X into itself and if there exists constants k_1,k_2,k_3,k_4,k_5 such that $0 \le k_j$, for $1 \le j \le 5$ and $k_1 + k_2 + 2k_3 + 2k_4 + k_5 < 1$ and

$$d(Px,Qy) \le k_1 d(x,Px) + k_2 d(y,Qy) + k_3 d(x,Qy) + k_4 d(y,Px) + k_5 d(x,y)$$

V. V. LATPATE.

5

, for all x, y in X. Then P, Q have a unique common fixed point in X.

Now we see some preliminary results of common fixed point theorem as follows. Manoj Kumar Generalized following theorem. Which is stated as

Theorem 2.16. [8] Let(X,G) be complete G-metric space. Let S and T be self mappings on X satisfying following conditions.

- 1. $S(X) \subseteq T(X)$,
- 2. S or T is continuous,
- 3. $G(Sa, Sb, Sc) \leq \beta G(Ta, Tb, Tc)$ for every a, b, c in X and $0 \leq \beta < 1$. And if S and T are Compatible then S and T have Unique common fixed points in X.

Proof. Let us take a_0 be an arbitrary element of X.We define a sequence s.t. for any point a_1 in X, define $Sa_0 = Ta_1$, $Sa_1 = Ta_2$, $Sa_2 = Ta_3$,....,In general for $a_{n+1} \in X$ s.t. $b_n = Sa_n = Ta_{n+1}$ for n = 0, 1, 2, 3... from (3) we get

$$G(Sa_n, Sa_{n+1}, Sa_{n+1}) \leq \beta G(Ta_n, Ta_{n+1}, Ta_{n+1})$$
$$= \beta G(Sa_{n-1}, Sa_n, Sa_n)$$

By continuing same procedure, we get

(2.1)
$$G(Sa_n, Sa_{n+1}, Sa_{n+1}) \le \beta^n G(Sa_0, Sa_1, Sa_1)$$

 \therefore for all $n, m \in N, m > n$, by using rectangle inequality, we get

$$G(b_n, b_m, b_m) \leq G(b_n, b_{n+1}, b_{n+1}) + G(b_{n+1}, b_{n+2}, b_{n+2})$$

$$+ G(b_{n+2}, b_{n+3}, b_{n+3}) + \dots + G(b_{m-1}, b_m, b_m)$$

$$\leq (\beta^n + \beta^{n+1} + \dots + \beta^{m-1})G(b_0, b_1, b_1)$$

$$\leq \frac{\beta^n}{1 - \beta}G(b_0, b_1, b_1)$$

6 STUDY OF COMPATIBLE MAPPINGS AND COMMON FIXED POINT RESULT IN G-METRIC SPACE.

taking limit as $n, m \to \infty$, we get $\lim_{n,m\to\infty} G(b_n,b_m,b_m)=0$. \therefore this shows that $\{b_n\}$ is a G-Cauchy sequence in X.Since given (X,G) is G-Complete metric space. \therefore , there exists a point $x\in X$ s.t. $\lim_{n\to\infty}b_n=x$ and $\lim_{n\to\infty}b_n=\lim_{n\to\infty}b_n=\lim_{n\to\infty}Ta_n=\lim_{n\to\infty}Ta_n=1$ x. Since the mapping S or T is Continuous. Suppose T is continuous, $\lim_{n\to\infty}TSa_n=Tx$. also given that S and T are compatible. $\lim_{n\to\infty}G(TSa_n,STa_n,STa_n)=0$. This gives $\lim_{n\to\infty}STa_n=Tx$. From (3) we get

$$G(STa_n, Sa_n, Sa_n) \le \beta G(TTa_n, Ta_n, Ta_n)$$

taking limit as $n \to \infty$, we get Tx = x Again from (3)we get

$$G(Sa_n, Sx, Sx) \le \beta G(Ta_n, Tx, Tx)$$

taking limit as $n \to \infty$, we get Tx = x ... we get Tx = Sx = x. Hence x is a common fixed point of S and T. For Uniqueness ,If possible suppose let x_1 be another common fixed point of S and T. Then we have, $G(x, x_1, x_1) > 0$ and

$$G(x, x_1, x_1) = G(Sx, Sx_1, Sx_1)$$

$$\leq \beta G(Tx, Tx_1, Tx_1)$$

$$= \beta G(x, x_1, x_1)$$

$$\leq G(x, x_1, x_1)$$

which is impossible. $\therefore x = x_1$. Hence uniqueness follows.

Example 2.17. If X = [-1,1] and G be a G-metric space s.t. $G: X^3 \to \mathbb{R}^+$ defined by

$$G(x_1, y_1, z_1) = (|x_1 - y_1| + |y_1 - z_1| + |z_1 - x_1|)$$

for all $x_1, y_1, z_1 \in X$. Then X is a G-Metric space. We define $S(x_1) = \frac{x_1}{6}$ and $T(x_1) = \frac{x_1}{2}$. If S is Continuous and $S(X) \subseteq T(X)$.

Here $G(Sx_1, Sy_1, Sz_1) \leq \beta G(Tx_1, Ty_1, Tz_1)$ is true for all $x_1, y_1, z_1 \in X$, $\frac{1}{3} \leq \beta < 1$ and 0 is the common fixed point of S and T which is Unique.

Now,we prove Common fixed point result for the pair of compatible maps in G-Metric space which is the generalization of Theorem 2.15.

V. V. LATPATE.

7

3 Main Result

Theorem 3.1. Let X be a complete G-metric space. $S,T:X\to X$ be two compatible maps on X and which satisfies the following conditions,

(i)
$$S(X) \subseteq T(X)$$
,

(ii)S or T is G-continuous,

$$(iii) G(Sa, Sb, Sc) \le \alpha G(Sa, Tb, Tc) + \beta G(Ta, Sb, Tc)$$

 $+ \gamma G(Ta, Tb, Sc) + \delta G(Sa, Tb, Tc)$ for every a, b, c in X and $\alpha, \beta, \gamma, \delta \geq 0$ with $0 \leq \alpha + 3\beta + 3\gamma + 3\delta < 1$. Then S and T have unique common fixed point in X.

Proof. Let a_0 be an arbitrary element in X by $S(X) \subseteq T(X)$, we construct a sequence $\{b_n\}$ in X such that for any a_1 in X $Sa_0 = Ta_1$. In general we take a_{n+1} such that $b_n = Sa_n = Ta_{n+1}$, n=0,1,2,... from given (iii) in hypothesis, we have

$$G(Sa_n, Sa_{n+1}, Sa_{n+1}) \le \alpha G(Sa_n, Ta_{n+1}, Ta_{n+1}) + \beta G(Ta_n, Sa_{n+1}, Ta_{n+1}) + \gamma G(Ta_n, Ta_{n+1}, Sa_{n+1}) + \delta G(Sa_n, Ta_{n+1}, Ta_{n+1})$$

by construction of sequence, we have

$$G(Sa_n, Sa_{n+1}, Sa_{n+1}) \le \alpha G(Sa_n, Sa_n, Sa_n) + \beta G(Sa_{n-1}, Sa_{n+1}, Sa_n) + \gamma G(Sa_{n-1}, Sa_n, Sa_{n+1}) + \delta G(Sa_n, Sa_n, Sa_n)$$

$$G(Sa_n, Sa_{n+1}, Sa_{n+1}) \le \beta G(Sa_{n-1}, Sa_{n+1}, Sa_n) + \gamma G(Sa_{n-1}, Sa_n, Sa_{n+1})$$

since by symmetry in variables, we have.

(3.1)
$$G(Sa_n, Sa_{n+1}, Sa_{n+1}) \le (\beta + \gamma)G(Sa_{n-1}, Sa_n, Sa_{n+1})$$

By using definition (2.2.1)(5), we have

$$G(Sa_{n-1}, Sa_n, Sa_{n+1}) \le G(Sa_{n-1}, Sa_n, Sa_n) + G(Sa_n, Sa_n, Sa_{n+1})$$

$$\le G(Sa_{n-1}, Sa_n, Sa_n) + 2G(Sa_n, Sa_{n+1}, Sa_{n+1})$$

(since by using proposition 2.2.2 (3)) from given inequality (iii) we have

$$(1 - 2\beta - 2\gamma)G(Sa_n, Sa_{n+1}, Sa_{n+1}) \le (\beta + \gamma)G(Sa_{n-1}, Sa_n, Sa_n)$$

8 Study of Compatible mappings and common fixed point result in G-metric space.

$$G(Sa_n, Sa_{n+1}, Sa_{n+1}) \le \frac{(\beta + \gamma)}{(1 - 2\beta - 2\gamma)} G(Sa_{n-1}, Sa_n, Sa_n)$$
$$G(Sa_n, Sa_{n+1}, Sa_{n+1}) \le gG(Sa_{n-1}, Sa_n, Sa_n)$$

where

$$q = \frac{(\beta + \gamma)}{(1 - 2\beta - 2\gamma)} < 1$$

continuing in this way, we have

(3.2)
$$G(Sa_n, Sa_{n+1}, Sa_{n+1}) \le q^n G(Sa_0, Sa_1, Sa_1)$$

 \therefore for all n,m $\in N$ let m > n, By using rectangular inequality we have, Lets consider,

$$G(b_n, b_m, b_m) \le G(b_n, b_{n+1}, b_{n+1}) + G(b_{n+1}, b_{n+2}, b_{n+2})$$

$$+ \dots + G(b_{m-1}, b_m, b_m)$$

$$G(b_n, b_m, b_m) \le (q^n + q^{n+1} + \dots + q^{m-1})G(b_0, b_1, b_1)(since\ by\ using\ (3.4.3))$$

$$\le \frac{q^n}{1 - q}G(b_0, b_1, b_1)$$

as $n,m \to \infty$, since q < 1, $\therefore \frac{q^n}{1-q} \to 0$ as $n,m \to \infty$ therefore R.H.S.of this inequality tends to 0. \therefore we have $\lim_{n\to\infty} G(b_n,b_m,b_m)=0$ Thus $\{b_n\}$ is a G-cauchy sequence in X. Also as X is a complete G-metric space, \therefore there exists $c \in X$ s.t. $\{b_n\}$ G-converges to c. $\lim_{n\to\infty} b_n = \lim_{n\to\infty} Sa_n = \lim_{n\to\infty} Ta_{n+1} = c$ Given S or T is continuous, Let T is continuous, $\lim_{n\to\infty} TSa_n = \lim_{n\to\infty} TTa_n = Tc$ Also S and T are compatible, $\therefore G(STa_n, TSa_n, TSa_n) = 0$ this gives $\lim_{n\to\infty} STa_n = Tc$ Now from hypothesis (iii) we have

$$G(STa_n, Sa_n, Sa_n) \le \alpha G(STa_n, Ta_n, Ta_n) + \beta G(TTa_n, Sa_n, Ta_n)$$
$$+ \gamma G(TTa_n, Ta_n, Sa_n) + \delta G(STa_n, Ta_n, Ta_n)$$

taking $\lim as n \to \infty$, we have Tc=c Again from (iii) we have

$$G(Sa_n, Sc, Sc) \le \alpha G(Sa_n, Tc, Tc) + \beta G(Ta_n, Sc, Tc)$$
$$+ \gamma G(Ta_n, Tc, Sc) + \delta G(Sa_n, Tc, Tc)$$

V. V. LATPATE.

9

Taking limit as $n \to \infty$, we have c=Sc. \therefore we have Tc=Sc=c. This shows that c is a common fixed point of S and T.

uniqueness:-If possible c_1 other than c be another common fixed point of S and T.Then $G(c,c_1,c_1)>0$ and

$$G(c, c_1, c_1) = G(Sc, Sc_1, Sc_1) \le \alpha G(Sc, Tc_1, Tc_1) + \beta G(Tc, Sc_1, Tc_1)$$

$$+ \gamma G(Tc, Tc_1, Sc_1) + \delta G(Sc, Tc_1, Tc_1)$$

$$G(c, c_1, c_1) \le (\alpha + \beta + \gamma + \delta)G(c, c_1, c_1) \quad G(c, c_1, c_1) < G(c, c_1, c_1)$$

References

- [1] G.Jungck Commuting maps and fixed points Amer.Math.Monthly,83(1976)261-263.
- [2] Sesa,S. On Weakly Commutativity condition in fixed point consideration Publ.Int.Math.32(46)(1986)
- [3] K.M.Das,K.V.Naik, Common fixed point theorems for commuting maps on a metric space Proc.Amer.Math.Soc.,77(1979),369-373.
- [4] B.Fisher Common fixed points of four mappings ,Bull.Inst.Acad.Sin.,11(1983),103-113.
- [5] G.Jungck Compatible mappings and common fixed points, Internat.J.Math.Sci.9,(1986),771-779
- [6] Jungck.G. , Compatible mappings and common fixed points(2),Int.J.Math.Math.Sci,11(1988),285-288
- [7] G.Jungck Common Fixed points for Commuting and Compatible maps on Compacta Proc.Amer.Math.Soc.,103(1988),977-983

- 10 Study of Compatible mappings and common fixed point result in G-metric space.
- [8] Manoj Kumar Compatible Maps in G-Metric spaces Int. Journal of math. Analysis, Vol. 6,2012, no. 29,1415-1421.
- [9] Mustafa Z.,Sims A new approach to Generalized metric Spaces J. nonlinear convex Anal. 7(2),289-297.(2006)
- [10] Madhusudan Rao J. Mappings On Metric Spaces Indian J.Pure appl.Math.,11(4)(1980):502-506